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We give experimental evidence of hyperbolic patterns in a nonlinear optical resonator. Such transverse

patterns are a new kind of 2D dissipative structures, characterized by a distribution of the active modes

along hyperbolas in the transverse wave-vector domain, in contrast with the usual (elliptic) patterns where

the active modes distribute along rings. The hyperbolic character is realized by manipulating diffraction

inside the optical resonator with cylindrical lenses. We also investigate theoretically hyperbolic patterns in

corresponding Swift-Hohenberg models.
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Introduction.—Spontaneous pattern formation is a uni-
versal behavior of out of equilibrium systems, found in
fields as diverse as chemistry, biology, fluid mechanics, and
nonlinear optics, among others [1]. Spontaneous patterns
are characterized by an intrinsic spatial scale determined
by dynamical parameters (e.g., the resonator detuning in
cavity nonlinear optics) and not by the geometrical con-
straints imposed by the boundaries [2]. The existence of a
well-defined scale is related with the isotropy of the sys-
tem, resulting in models of elliptic type (concerning the
spatial coupling), where the nonlocality is represented by a
spatial differential operator reducible to the Laplace form
L1;1 ¼ ð@2=@x2 þ @2=@y2Þ (maybe after rotation and re-

scaling). Such spatial coupling corresponds to, e.g., diffu-
sion in chemistry or diffraction in optics.

Recently, pattern formation of a different, hyperbolic
type has been proposed [3] for systems governed by the
d’Alambert-type operator L1;�1 ¼ ð@2=@x2 � @2=@y2Þ.
Optical resonators offer such a possibility as diffraction
can be manipulated, making it different along two different
transverse directions. Two proposals of realization of hy-
perbolic systems were analyzed in Ref. [3]: (i) the use of
photonic-crystal-like resonators (those with periodic
modulation of the refractive index along one transverse
direction [4,5]) and (ii) the use of nearly self-imaging [6–
8], astigmatic resonators, as we do here: The sign of the
diffraction coefficient of an optical resonator can be tuned
by varying the cavity length around the self-imaging con-
figuration, while for astigmatic resonators (with cylindrical
lenses) diffraction can be manipulated separately along
two orthogonal transverse directions. Self-imaging resona-
tors have been central for the success of many nonlinear
optical patterns experiments [9–11].

In this Letter, we report the first experimental observa-
tion of hyperbolic patterns. We consider both the case of a
complex system (exhibiting phase invariance) and that of a
real one (exhibiting bistable phase locking), which are two

basic types of nonlinear optical cavities. In Ref. [3], hyper-
bolic patterns in a complex Swift-Hohenberg (SH) equa-
tion were numerically demonstrated. Here we analyze the
real SH equation as well. Both models have been shown to
rule pattern formation in a variety of nonlinear optical
resonators [12–15], in particular, photorefractive oscilla-
tors [9,10], which is the system we have studied experi-
mentally. As we are dealing with hyperbolic systems, the
usual operator L1;1 appearing in SH models is replaced by

L1;�1, as in [3].

The experimental setup.—A linear cavity photorefrac-
tive oscillator (PRO) similar to those in Refs. [9,11]
(Fig. 1) was considered. The nonlinear material (a
BaTiO3 crystal) is pumped by two counterpropagating
coherent beams coming from a single-mode 514 nm Arþ
laser delivering powers around 150 mW. Refractive index
gratings excited in the photorefractive crystal by the inter-
ference between the pump and the generated fields (which
oscillate inside the cavity) produce a self-consistent scat-
tering of pump energy towards the signal beams and vice
versa.
The system described above is highly versatile. When

one of the pump beams is blocked, nondegenerate four-
wave mixing (ND4WM) occurs, leading to a complex
order parameter system (similar to a laser from the non-
linear dynamics viewpoint). On the contrary, when the two
pump beams act and their intensities are well balanced, the
system works under degenerate four-wave mixing
(D4WM), leading to a real order parameter system (behav-
ing similarly to a degenerate optical parametric oscillator).
The hyperbolic resonator.—As for diffraction, lenses L1

and L2, on one hand, and L3 and L4, on the other hand
(Fig. 1), form two telescopes that image the planar mirrors
M and PM, respectively, close to the crystal, thus leading to
a nearly self-imaging planar resonator with a very large
Fresnel number. The cylindrical lens CL, having optical
power along direction y for definiteness, is placed at the
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Fourier plane of the left telescope, which now has two
different axial magnifications corresponding to the two
orthogonal transverse directions (x and y). As a conse-
quence, two different, effective cavity lengths (determin-
ing the diffraction coefficients [11]) occur corresponding
to the two orthogonal transverse directions (x and y): If ‘0
is the shift of the output mirror (PM) from perfect self-
imaging along the x direction, then the effective cavity
lengths through the set of lenses are given by ‘x ¼
�ðf3=f4Þ2‘0 and ‘y ¼ ‘x � f23=fc, with f3 ¼ 20 cm,

f4 ¼ 10 cm, and fc ¼ �100 cm the focal lengths of
lenses L3, L4, and CL, respectively. In particular, hyper-
bolic modes are obtained when ‘x and ‘y have opposite

signs. Typical effective cavity lengths used in the experi-
ments were ‘x ¼ �‘y ¼ 2 cm, achieved by shifting the

output mirror by ‘0 ¼ �0:5 cm (other lengths were used
as well). Note that when CL is removed (equivalently, fc ¼
1), ‘y ¼ ‘x and the resonator becomes elliptical (with

perfect cylindrical symmetry around the cavity axis).
In Fig. 2, the far field emitted by the resonator is shown.

Note that the pattern is similar to the transmission of the
resonator under diffuse illumination. Each hyperbola (two
branches each) corresponds to a cavity longitudinal mode.
By varying the cavity length by means of the piezomirror
PM, the detuning of each longitudinal mode (difference
between the frequency of the pump and that of the mode)
can be modified.

The observed far-field distribution cannot be considered
in the single-longitudinal mode theoretical analysis of
Ref. [3], which leads to a single hyperbola in the far field.
In order to approach the theoretical treatment, we modified
the experiment by filtering the far field with suitable masks
in order to allow the existence of only one hyperbola (one
longitudinal hyperbolic mode), so that Ref. [3] and related
models can be tested experimentally.

Modeling the hyperbolic interferometer.—We first de-
scribe mathematically the plane-mirror resonator of Fig. 1
without the nonlinear crystal (the hyperbolic interferome-
ter). For that we note that, at any time t, the field transverse
distribution Aðx; y; tÞ at some reference plane is given by

Aðx; y; tÞ ¼ RAðx; y; t� tcÞ þ
ffiffiffiffiffiffi
Tin

p
Ainðx; y; tÞ; (1a)

where tc ¼ L=c is the cavity round-trip time (c is the speed

of light and L is the total optical length in one cavity round-
trip seen by the axial optical ray), Ainðx; y; tÞ is the ampli-
tude of a (possibly existing) injected field, Tin is a trans-
mission factor,

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T

p
expðik0LÞ expðiLÞ; (1b)

L ¼ ð2k0Þ�1ðlx@2x þ ly@
2
yÞ; (1c)

T is the fraction of energy lost (e.g., via mirror trans-
mission) along one round-trip, k0 is the light wave number,
and L describes diffraction (coming from the integration
of the paraxial Helmholtz equation). When sgn‘x ¼ sgn‘y,

L is elliptic, while if sgn‘x ¼ �sgn‘y,L is hyperbolic. In

the following, we assume, without loss of generality, ‘x ¼
l > 0 and ‘y ¼ �l, where � ¼ 1 in the elliptic case and

� ¼ �1 in the hyperbolic one. Upon approximating
Aðx; y; t� tcÞ by Aðx; y; tÞ � tc@tAðx; y; tÞ, Eq. (1a) be-
comes tc@A=@t ¼ ðR� 1ÞAþ ffiffiffiffiffiffi

Tin

p
Ain. We assume, as

usual, that 0< T � 1 and that k0Lmod2� is of order T
(near resonance operation: T sets the cavity linewidth).
Both conditions render L small (mod2�), as we will see.
Then R� 1 � � 1

2T þ i sinðk0LþLÞ to the leading or-

der, where cosðk0LþLÞ has been consistently approxi-

FIG. 2. Emission (far field) of the hyperbolic resonator.
Experimental recordings (upper row) for (a) positive detuning,
(b) zero detuning, and (c) negative detuning. The far field
calculated numerically from Eq. (2) by using the speckle field
for Ain (bottom row) for (d) positive � ¼ 1, (e) zero � ¼ 0, and
(f) negative � ¼ �1 detuning. Parameters: ‘x ¼ �‘y ¼ 2 cm,

T ¼ 0:2, the width of the window �kx ¼ �ky ¼ 20 cm�1, and

the width of the input far field kx;0 ¼ ky;0 ¼ 10 cm�1.

FIG. 1. Scheme of the experimental setup. M (cavity mirror), L1–L4 (lenses), CL (cylindrical lens), PM (movable piezomirror), l0
(shift of the output mirror from self-imaging, SI). PM0 and M0 are the image planes of PM and M, respectively, through the
corresponding set of lenses. ly and lx are effective cavity lengths; D is the mask located in the Fourier plane (FP) so as to filter

transverse modes corresponding to other longitudinal modes.
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mated by 1, and one gets finally

��1 @A

@t
¼ �Aþ i

2

T
sin

�
T

2
ðl2DL1;� � �Þ

�
Aþ Ain; (2)

� ¼ cT=2L is the cavity linewidth, L1;� ¼ @2x þ �@2y,

lD ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
l=k0T

p
is a diffraction length (lD � 100 �m in our

experiment), � ¼ ð2=TÞð�k0Lmod2�Þ ¼ ð!c �!0Þ=� is
the cavity mistuning, with !0 ¼ ck0 the radiation fre-
quency and !c the closest cavity longitudinal mode fre-
quency, and Ain ¼ 2ð ffiffiffiffiffiffi

Tin

p
=TÞAin. The steady solution of

(2) is easily expressed in the far field [the spatial Fourier
transform in terms of the transverse wave vector ðkx; kyÞ] as
~Aðkx; kyÞ ¼ Tðkx; kyÞ ~Ainðkx; kyÞ, where

T ðkx; kyÞ ¼ ½1þ 2iT�1 sin�ðkx; kyÞ��1 (3)

is the transmittance of the interferometer, and �ðkx; kyÞ ¼
ðT=2Þ½l2Dðk2x þ �k2yÞ þ ��. The transmission factor jTj2 is

maximum, jTj2 ¼ 1, for � ¼ 2 m�, m integer, which
defines the usual family of concentric rings when � ¼ 1,
or a family of hyperbolas for � ¼ �1 (Fig. 3). Note that
departures from that maximum as small as �ðkx; kyÞ ¼
2m�� 2T (recall that 0< T � 1) yield jTj2 ¼ 0:06.
Hence the approximation cosðk0LþLÞ � 1 we did in
arriving to Eq. (2) is sensible.

Model (2) describes the multilongitudinal dynamics of
the interferometer. The single-longitudinal model follows
from approximating sin� � �,

��1@A=@t ¼ �ð1þ i�ÞAþ il2DL1;�Aþ Ain; (5)

which reproduces the inner hyperbola in Fig. 2. In the
following, we shall ignore the term Ain as we are not
considering optical injection in our experiment.

We have considered both single-longitudinal as well as
multilongitudinal mode patterns in experiments and in

numerics. Here we restrict to the single-longitudinal case
as the multilongitudinal mode one does not offer qualita-
tively new phenomena.
Hyperbolic Swift-Hohenberg models.—After the pre-

vious characterization of the passive resonator, it is clear
that appropriate hyperbolic SH models are obtained by
simply substituting the Laplacian operator L1;1 of usual

SH models by L1;� [16]. As commented we shall consider

the two following models:

@A=@t ¼ rA� A3 � ðL1;� � �Þ2A; (6)

@A=@t¼ rA�jAj2Aþ iðL1;���ÞA�ðL1;���Þ2A; (7)

where r measures the gain excess relative to threshold,
which occurs at r ¼ 0. In both models, all quantities are
dimensionless by properly normalizing the order parame-
ter A, time, and space (the latter to lD). Equation (6) is a
real SHmodel holding the symmetry A ! �A and hence is
appropriate for describing degenerate wave mixing [9,13].
Equation (7), already studied in the single-longitudinal
mode limit in [3], is a complex SH model holding the
symmetry A ! A expði’Þ, ’ arbitrary and hence is good
for describing nondegenerate wave mixing [10].
Incidentally, we note that our analysis of the passive reso-
nator shows that multilongitudinal models, in particular, of
the SH type, can be written down directly just by substitut-
ing the differential operator of the SH modelðL1;� � �Þ by
ð2=TÞ sin½ðT=2ÞðL1;� � �Þ� [16].
The nondegenerate case.—When one of the pump beams

is blocked, ND4WM occurs and the PRO behaves substan-
tially like a laser. The common patterns appearing in this
case are vortices, which are phase singularities: The field
intensity goes to zero at the vortex center, and the field
phase goes through 2� by circulating around the vortex.
Specific to the hyperbolic case is that vortices can be
elongated and have a tendency to be aligned along some
directions, determined by those of the hyperbola asymp-
totes. Depending on the character of the underlying tilted
wave, two types of vortex patterns exist: If the tilted wave
points to the basis of hyperbola, then the positive and
negative vortices are symmetrically stretched along the
different directions [Fig. 3(a)]. If the tilted wave points to
one of two asymptotes of hyperbola, then the asymmetric
situation is realized where the vortices of one sign are
stronger stretched and of the other are almost cylindric
[Fig. 3(b)]. These cases are discussed in detail in [3].
Experimental evidence of the differently stretched vortices
and also of cylindric ones is given in Figs. 3(c) and 3(e),
where also the angular variation of the field phase argðAÞ
around two vortices (one hyperbolic, one cylindric) is
shown to be affected by hyperbolicity. Good correspon-
dence with numerically obtained vortices of the complex
SH model (7) is appreciated. We note that the single-
longitudinal mode operation is forced in the experiment
by using suitable diaphragms located in a Fourier plane
[11], which in our case are designed just to transmit light
corresponding to the inner hyperbola in the far field.

FIG. 3. Numerical Eq. (7) (a),(b) and experimental (c),(d)
vortices: the intensities of the pattern (a)–(c), the reconstructed
phase of the experimental pattern (d), and the variation of the
field phase around the hyperbolic (e) and circular vortices (f),
respectively (experiment). Parameters in numerical integration:
r ¼ 1, � ¼ 0:5, window size X ¼ Y ¼ 30, integration grid
(128� 128), and integration time t ¼ 200.
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The degenerate case.—By unblocking the second pump
beam, D4WM occurs. Common patterns appearing in this
case are rolls and phase domains [9,11].

Examples of calculated field profiles in the single-
longitudinal hyperbolic SH model (6) are presented in
Fig. 4, which shows saturated (quasi-steady-state) patterns.
They are quasi-steady-state because usually they still dis-
play slow spatial variations. A large variety of patterns is
observed, although two different regimes can be identified
roughly: (i) For ‘‘large’’ detuning j�j � 1, patterns are
usually rolls, comprised of two spots in the far field resid-
ing on the resonant hyperbola. Sometimes two rolls appear
(two pairs of spots in the far field) resulting in two domains
of differently oriented rolls. (ii) For ‘‘small’’ detuning
j�j< 1, when the hyperbola degenerates into a cross (see
Fig. 2), phase domains are observed. The domain bounda-
ries are oriented along the axes of the hyperbola, i.e., jxj ¼
jyj. Curiously, in this case the domain boundaries form a
broken structure at angles between domains around 90	.

Finally, in Fig. 5, we show examples of experimentally
recorded hyperbolic patterns for different detunings. The
hyperbolic character is evidenced in the near-field pattern

by the different slopes and different spatial frequencies
observed, as well in the far field.
In conclusion, we have given evidence of hyperbolic

transverse patterns (vortices, rolls, and phase domains) in
a nonlinear optical cavity. Unlike usual (cylindric) pat-
terns, hyperbolic ones can be composed of different spatial
scales and orientations. Simulations of universal (Swift-
Hohenberg) models are in qualitative agreement with the
experiments.
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FIG. 4. Numerical patterns of the real SH Eq. (6). Left: Near-
field intensity. Right: Far-field intensity. Parameters: r ¼ 1,
window size X ¼ Y ¼ 30, integration grid (128� 128), and
(a) � ¼ 0 and (b) � ¼ 1. Integration time is t ¼ 200.

FIG. 5. Experimental recordings of the near (left column) and
far field (right column) of hyperbolic patterns depending on
detuning when only one longitudinal mode is allowed by spatial
filtering. (a) Phase domains close to zero detuning. (b) Rolls with
different orientations and spatial scales for large detuning.
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